Accuracy Study of Low- and High-Order Numerical Techniques for Analysis of Scattering on Plasmonic Nanosphere at THz Frequencies

Mohammad Shafieipour, Chen Niu, Vladimir Okhmatovski

University of Manitoba
Dept. of Electrical and Computer Engineering
Winnipeg, Canada
Outline

- Motivation
- Numerical methods studied
 - VIE and SWG Method of Moments
 - PMCHWT and RWG Method of Moments
 - EFIE and Locally Corrected Nystrom Method
- Numerical results
- Conclusions

IEEE APS/URSI2014, Memphis, TN; July 6-11, 2014
Motivation

- Plasmonic nano-particles as transmission lines at THz:
 - Waveguiding at nano-scale level
 - Sub-wavelength confinement*
 - Low attenuation (in theory)
 - High attenuation (in practice)

(*) A. Alu and N. Engheta, *Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines*, Physical Review B. Vol 74, November, 2006
Perturbed case: Statistical disorder has been introduced in the longitudinal position (z direction) of the spheres.

Results by J. Ochoa, X. Ma, A. Cangellaris (Univ. of Illinois at U-C) from IEEE APS/URSI’2013

IEEE APS/URSI2014, Memphis, TN; July 6-11, 2014
Volume E-Field Integral Equation (VIE):

\[
\frac{j(r)}{i\omega \left[\varepsilon_a(r) - \varepsilon_0 \right]} + \int_V \overline{G}_{e_0}(r, r') \cdot j(r') \, dv' = E^{inc}(r), \quad r \in V
\]

E-Field dyadic Green’s function:

\[
\overline{G}_{e_0}(r, r') = -i\omega \mu_a (1 + 1/k^2\nabla\nabla)G(r, r')
\]

Volume -> Shaubert-Wilton-Glisson (SWG):

\[
j(r) \equiv \sum_{n=1}^{N_V} j_n f_n (r) \quad \rightarrow \quad \left[Z_{VV}^{Ej} \right] \cdot \left[j \right] = \left[v^{inc} \right]
\]
RWG MoM solution of PMCHWT

PMCHWT Integral Equation:

\[
\begin{align*}
\hat{t} \cdot \int_{S} [\vec{G}_{e0}(r,r') + \vec{G}_{e1}(r,r')] \cdot J(r') dS' + \hat{t} \cdot \int_{S} [\vec{G}_{m0}(r,r') + \vec{G}_{m1}(r,r')] \cdot K(r') dS' &= \hat{t} \cdot E^{inc}(r), \quad r \in S \\
\hat{t} \cdot \int_{S} [\vec{G}_{m0}(r,r') + \vec{G}_{m1}(r,r')] \cdot J(r') dS' + \hat{t} \cdot \int_{S} [\vec{G}_{e0}(r,r') + \vec{G}_{e1}(r,r')] \cdot K(r') dS' &= \hat{t} \cdot H^{inc}(r), \quad r \in S
\end{align*}
\]

E-Field dyadic Green’s function:

\[
\vec{G}_{e0}(r,r') = -i \omega \mu_a \left(1 + 1/k^2 \nabla \nabla\right) G(r,r')
\]

H-Field dyadic Green’s function:

\[
\vec{G}_{m0}(r,r') = \nabla G(r,r') \times \vec{I}
\]

Surface -> Rao-Wilton-Glisson (RWG) MoM:

\[
J(r') \approx \sum_{n=1}^{N_S} J_n F_n(r)
\]

\[
\begin{bmatrix}
Z_{0}^{EJ} & Z_{1}^{EJ} & Z_{0}^{EK} & Z_{1}^{EK} \\
Z_{0}^{HJ} & Z_{1}^{HJ} & Z_{0}^{HK} & Z_{1}^{HK}
\end{bmatrix}
\begin{bmatrix}
J \\
K
\end{bmatrix}
=
\begin{bmatrix}
E^{inc} \\
H^{inc}
\end{bmatrix}
\]

IEEE APS/URSI2014, Memphis, TN; July 6-11, 2014
Surface Electric Field Integral Equation:

\[
\begin{align*}
\frac{-K(r)}{2} - \hat{t} \cdot \int_S G_{e0}(r, r') \cdot J(r') dS' + \hat{t} \cdot \int_S \tilde{G}_{m0}(r, r') \cdot K(r') dS' &= \hat{t} \cdot E^{\text{inc}}(r), \quad r \in S \\
\frac{K(r)}{2} - \hat{t} \cdot \int_S G_{e1}(r, r') \cdot J(r') dS' + \hat{t} \cdot \int_S \tilde{G}_{m1}(r, r') \cdot K(r') dS' &= 0, \quad r \in S
\end{align*}
\]

Locally Corrected Nystrom discretization = point sampling on Bezier patches:

\[
\tilde{J}(\vec{r}) = \sum_{q=1}^{Q} w_q J^1_q \hat{a}^1_q \delta(\vec{r} - \vec{r}_q) + \sum_{q=1}^{Q} w_q J^2_q \hat{a}^2_q \delta(\vec{r} - \vec{r}_q)
\]

\[
\tilde{K}(\vec{r}) = \sum_{q=1}^{Q} w_q K^1_q \hat{a}^1_q \delta(\vec{r} - \vec{r}_q) + \sum_{q=1}^{Q} w_q K^2_q \hat{a}^2_q \delta(\vec{r} - \vec{r}_q)
\]

IEEE APS/URSI 2014, Memphis, TN; July 6-11, 2014
Radial dipole excitation: $|E(r, t=0)|$

VIE with 2594 tets:

Mie over 2594 tets:

IEEE APS/URSI2014, Memphis, TN; July 6-11, 2014
Radial dipole excitation: $|\mathbf{E}(\mathbf{r}, t=0)|$

790THz, \(R=10\text{nm} \), \(r'=22\text{nm} \)

IEEE APS/URSI2014, Memphis, TN; July 6-11, 2014
Radial dipole excitation: $|E(r, t=0)|$

$\varepsilon = -3.8 + j0.19$, 790THz, $R=10\text{nm}$, $r'=22\text{nm}$

Slice over y axis

Slice over z axis

Local artifacts in SWG MoM solution (especially near surface)

IEEE APS/URSI2014, Memphis, TN; July 6-11, 2014
Radial dipole excitation: $|\mathbf{E}(r,t=0)|$

790THz, R=10nm, r'=22nm, SWG-VIE

- 1 sphere case
- Only 2 digits of precision can be obtained by mesh refinement, typical for LO Methods
Radial dipole excitation: $|E(r,t=0)|$

- 1 sphere case
- Only 2 digits of precision can be obtained by mesh refinement, typical for LO Methods

$790\text{THz}, R=10\text{nm}, r'=22\text{nm}, \text{RWG-PMCHWT}$
Radial dipole excitation: $|\mathbf{E}(\mathbf{r}, t=0)|$

- 1 sphere case
- HO behavior can be achieved for dielectric and plasmonic cases
- Up to 9 digits of precision

790THz, R=10nm, r’=22nm, HO-LCN
15 Exact Spheres

Sphere #

Mag J (Average on 1 sphere)
Mag J (Only 1 point on 1 sphere)

Flux of J

Magnitude of X-directed Flux of J
15 Deformed Spheres

15 Plasmonic 27 Element Deformed Spheres at Order 5

15 Plasmonic 24 Element Deformed Spheres at Order 5
Conclusions

- Integral equation (IE) methods for plasmonics at THz:
 - Schaubert-Wilton-Glisson Moment Method for Volume IE:
 - Applicable numerical scheme
 - Slow error convergence
 - Poor conditioning of matrix equation
 - Produces notably higher error in case of plasmonic structures
 - Too heavy without fast algorithm
 - Can handle general anisotropy
 - Rao-Wilton-Glisson Moment Method for PMCHWT IE:
 - Applicable numerical scheme
 - Slow (low-order) error convergence
 - Adequate conditioning of matrix equation
 - Cannot handle general anisotropy
 - Locally-Corrected Nystrom solution of EFIE:
 - Applicable numerical scheme
 - Fast error convergence
 - Adequate conditioning of the matrix equation
 - Cannot handle general anisotropy